

ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks Qilong Wang¹, Banggu Wu¹, Pengfei Zhu¹, Peihua Li², Wangmeng Zuo³, Qinghua Hu¹ ¹Tianjin University, ²Dalian University of Technology, ³Harbin Institute of Technology

Motivation

Attention is widely used to improve deep CNNs, such as SENet (CVPR18), CBAM (ECCV18), GSoP (CVPR19), etc. Most existing attention modules achieve better performance, but inevitably increase model complexity.

Question: Can one learn effective channel attention in a more efficient way?

Analysis and Findings						
Methods	Attention	#.Param.	Top-1	Top-5		
Vanilla	N/A	0	75.20	92.25		
SE	$\sigma(f_{(w_1,w_2)}(y))$	$2 \times C^2 / r$	76.71	93.38		
SE-Var1	$\sigma(y)$	0	76.00	92.90		
SE-Var2	$\sigma(\mathbf{w} \odot \mathbf{y})$	С	77.07	93.31	U	
SE-Var3	$\sigma(\mathrm{Wy})$	C^2	77.42	93.64	F	
SE-GC1	$\sigma(GC_{16}(y))$	$C^2 / 16$	76.95	93.47	L	
SE-GC2	$\sigma(GC_{C/16}(y))$	16× <i>C</i>	76.98	93.31	T	
SE-GC3	$\sigma(GC_{C/8}(y))$	$8 \times C$	76.96	93.38	E	
ECA-NS	$\sigma(\omega)$ with Eq.(7)	$k \times C$	77.35	93.61	77	
ECA(Ours)	$\sigma(\text{C1D}_k(\mathbf{y}))$	<i>k</i> = 3	77.43	93.65	•	
I: Avoiding Dimensionality Reduction (DR)						
_		_		1 ~ 7	• ••	

	$w^{1,1}$	• • •	0		$w^{\perp,\perp}$	• • •
$\mathbf{W}_{var2} =$	$\vdots \\ 0$	••••	$\vdots \\ w^{C,C}$	$\mathbf{W}_{var3} =$	$ec{w}^{1,C}$	•••

SE-Var2 > SE: Avoiding dimensionality reduction is more important than consideration of nonlinear channel dependencies.

II: Cross-Channel Interaction (CCI) is helpful.

 \mathbf{W}_{G}^{G} .

SEVar-3 > SE-Var2: Cross-channel interaction is beneficial to learn channel attention, but leads to high model complexity.

$$\mathbf{W}_{GC} = \begin{bmatrix} \mathbf{W}_G^1 & \cdots \\ \vdots & \ddots \\ \mathbf{0} & \cdots \end{bmatrix}$$

Group Conv. (GC) is not effective to capture cross-channel interaction. ECA Reason: SE-GC completely discards dependences among different groups.

 $w^{1,C}$

 $w^{C,C}$

Experiments on ImageNet-1K #.Param. FLOPs Top-1 Top-5 Backbone 11.148M 1.699G 70.40 89.45 ResNet-18 11.231M 1.700G 70.59 89.78 ECA-Net (Ours) 11.148M 1.700G 70.78 89.92 20.788M 3.427G 73.31 91.40 20.938M 3.428G 73.87 91.65 ResNet-34 20.943M 3.428G 74.01 91.76 74.21 91.83 ECA-Net (Ours) 20.788M 3.428G 3.86G 75.20 92.52 24.37M 26.77M 3.87G 76.71 93.38 ResNet-50 26.77M 3.87G 77.34 93.69 28.05M 6.18G 77.68 93.98 24.37M ECA-Net (Ours) 3.86G 77.48 93.68 76.83 93.48 7.34G 42.49M 47.01M 7.35G 77.62 93.93 ResNet-101 47.01M 7.35G 78.49 94.31 ECA-Net (Ours) 7.35G 78.65 94.34 42.49M MobileNetV2 319.4M 71.64 3.34M 90.20 MobileNetV2 3.40M 320.1M 72.42 90.67 319.9M 72.56 90.81 ECA-Net (Ours) 3.34M

Experiments on MS-COCO

od	Detector	#.Param.	GFLOPs	AP	Gains
t-101	Faster R-CNN	60.52M	283.14	38.7	-
olock		65.24M	283.33	39.6	† 0.9
A(Ours)		60.52M	283.32	40.3	† 1.6
t-101	Mask R-CNN	63.17M	351.65	39.4	_
olock		67.89M	351.84	40.7	† 1.3
A(Ours)		63.17M	351.83	41.3	† 1.9
t-101	RetinaNet	56.74M	315.39	37.7	-
olock		61.45M	315.58	38.7	† 1.0
A(Ours)		56.74M	315.57	39.1	† 1.4